Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

($\left.1 S^{*}, 2 S^{*}, 5 S^{*}, 9 S^{*}, 10 S^{*}, 11 R^{*}, 18 R^{*}\right)-9,10,18-$ Trihydroxy-12,12-dimethyl-6-methylene-17-oxapentacyclo[7.6.2.1 ${ }^{5,8} .0^{1,11} .0^{2,8}$]-octadecane-7,15-dione

The title compound, $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}$, was prepared from the natural diterpenoid oridonin and is composed of one five-membered ring with an envelope conformation and five six-membered rings, four with boat conformations and one with a twist-boat conformation. The molecules are assembled into chains via hydrogen bonding.

Comment

The natural diterpenoid oridonin (Lu et al., 1995; Shi et al., 1992) was found to have antitumor activity (Zuo et al., 2005). In order to investigate the relationship between its structure and activity, a derivative of oridonin, which has an α-methylene cyclopentanone function, was synthesized and its structure characterized by X-ray diffraction.

(I)

The molecule of the title compound, (I) (Fig. 1), is built up from five six-membered rings and one five-membered ring. The cyclohexane ring ($\mathrm{C} 1 / \mathrm{C} 11-\mathrm{C} 15$) adopts a twist-boat conformation, with puckering parameters (Cremer \& Pople, 1975) $Q=0.701$ (3) A, $\theta=96.7$ (2) and $\varphi=273.9$ (2) $)^{\circ}$, ring C1/ $\mathrm{C} 2 / \mathrm{C} 8-\mathrm{C} 11$ exists in a boat conformation $[Q=0.838$ (2) $\AA, \theta=$ 97.73 (16) and $\varphi=178.96$ (17) ${ }^{\circ}$], ring C1/C16/O5/C9/C10/C11 adopts a boat conformation $[Q=0.805$ (2) $\AA, \theta=96.23$ (16) and $\varphi=242.75(16)^{\circ}$], ring $\mathrm{C} 1 / \mathrm{C} 16 / \mathrm{O} 5 / \mathrm{C} 9 / \mathrm{C} 8 / \mathrm{C} 2$ adopts a boat conformation $[Q=0.854(2) \AA, \theta=90.77$ (15) and $\varphi=$ $\left.68.02(15)^{\circ}\right]$, and ring $\mathrm{C} 2-\mathrm{C} 5 / \mathrm{C} 18 / \mathrm{C} 8$ adopts a boat conformation $\left[Q=0.818\right.$ (3) $\AA, \theta=101.19$ (18) and $\left.\varphi=54.78(19)^{\circ}\right]$. The five-membered ring (C5-C8/C18) is a conjugated α methylene cyclopentanone ring and adopts an envelope conformation, with puckering parameters $q_{2}=0.477$ (3) \AA and $\varphi_{2}=320.6(3)^{\circ}$ (envelope on C18). It has been found that this ring in rabdosia diterpenes is highly reactive toward sulfhydryl (thiol) groups essential to the enzyme function (Yamaguchi et al., 1977). As a result of the conjugated α-methylene cyclo-

Received 19 October 2006
Accepted 2 November 2006

[^0]
Hao Shi,* Ming-Liang Huang and Ya-Ping Lü

The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: shihao@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.096$
Data-to-parameter ratio $=8.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Figure 1
Perspective view of the title compound, shown with 30% probability displacement ellipsoids.

Figure 2
The crystal packing diagram for the title compound. Hydrogen bonds are indicated by dashed lines.
pentanone ring, six atoms ($\mathrm{C} 5-\mathrm{C} 8, \mathrm{C} 19$ and O 2) are roughly coplanar, the largest deviation from the mean plane being 0.0234 (15) Å for atom C5.

The three hydroxy groups are involved in hydrogen bonding (Fig. 2 and Table 1) although only atom O6 establishes an intermolecular hydrogen bond with a neighbouring molecule and thus assembles the molecules in chains (running along the b axis). The intramolecular hydrogen bonds involving the other hydroxy groups are important for inhibitory activity (Yamaguchi et al., 1977).

Experimental

Jones reagent (0.5 ml) was added to a solution of oridonin (200 mg ; isolated from Rubdosin rubescens) in acetone (35 ml). After stirring for 30 min at room temperature, the solution was filtered and added to $24 \mathrm{ml} 15 \% \mathrm{NaHCO}_{3}$ in water. The mixture was extracted with $3 \times$

30 ml ethyl acetate, washed with $3 \times 30 \mathrm{ml}$ water, and dried with anhydrous MgSO_{4}. Evaporation of the solvent in vacuo left a white residue, which was purified by recrystallization with methanol to give the title compound as colorless crystals.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{6}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.407 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }^{\mu=0.10 \mathrm{~mm}^{-1}} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.51 \times 0.42 \times 0.19 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=362.41$
Monoclinic, $P 2_{1}$
$a=10.8260$ (11) \AA
$b=6.5434$ (7) \AA
$c=13.0040$ (13) \AA
$\beta=111.774$ (2) ${ }^{\circ}$
$V=855.47(15) \AA^{3}$

Data collection

Bruker SMART CCD area-detector	5077 measured reflections
\quad diffractometer	2029 independent reflections
φ and ω scans	1850 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.033$
$\quad(S A D A B S ;$ Bruker, 1999)	$\theta_{\max }=27.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.096$
$S=1.03$
2029 reflections
249 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0631 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H4 $\cdots \mathrm{O} 2$	$0.89(3)$	$1.79(3)$	$2.669(2)$	$172(2)$
O6-H6 \cdots O3	$0.822(19)$	$1.91(2)$	$2.669(2)$	$153(4)$
O3-H3 \cdots O $^{\mathrm{i}}$	$0.88(3)$	$1.92(3)$	$2.780(2)$	$164(4)$

Symmetry code: (i) $-x+1, y+\frac{1}{2},-z+1$.
H atoms of the hydroxy groups were located in a difference map and refined freely. The remaining H atoms were placed in calculated positions and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=$ $0.96\left(\mathrm{CH}_{3}\right), 0.97\left(\mathrm{CH}_{2}\right), 0.98(\mathrm{CH})$ and $0.93 \AA$ (terminal $\left.\mathrm{CH}_{2}\right)$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}\left(\mathrm{CH}_{3}\right)$ and $1.2 U_{\mathrm{eq}}\left(\mathrm{CH}_{2}\right.$ and CH$)$. In the absence of significant anomalous scattering effects, Friedel pairs were merged; only the relative stereochemistry is shown in the title, scheme and figures.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

This project was supported by the Science Foundation of Zhejiang Province, China (grant No. Y205318).

References

Bruker (1999). SMART (Version 5.611), SAINT (Version 6.02a) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.

organic papers

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Lu, D., Zheng, Q. T. \& Zhou, T. H. (1995). Jiegou Huaxue, 14, 237-239. (In Chinese.)
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Shi, J. Q., Chen, Y. Z., Wu, Q. J. \& Cheng, P. Y. (1992). Jiegou Huaxue, 11, 471475. (In Chinese.)

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yamaguchi, M., Taniguchi, M., Kubo, I. \& Kubota, T. (1977). Agric. Biol. Chem. 41, 2475-2477.
Zuo, H. J., Li, D., Wu, B., Gao, H. Y., Wu, L. J. \& Ikejima, T. (2005). J. Shenyang Pharm. Univ. 22, 258-262.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

